skip to main content


Search for: All records

Creators/Authors contains: "Tierce, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. The photodegradation of avobenzone ( AV ), the only ultraviolet filter molecule approved by the Food and Drug Administration to absorb UVA radiation, is an important problem in sunscreen formulations. In this paper, the photophysics and photostability of AV in various solvent systems and in aqueous micelles are studied. AV in its keto–enol tautomer functions as an effective UVA protection agent. AV is highly susceptible to photoinduced diketonization in both nonpolar solvents and in aqueous aggregates but is considerably more stable in polar, protic solvents like methanol. By studying its stability in different surfactant solutions, we show that incorporation of AV into sodium dodecylsulfate (SDS) micelles can achieve stability levels comparable to neat methanol. Steady-state spectral shifts, fluorescence anisotropy, and time-resolved fluorescence decay measurements are all consistent with AV experiencing a polar environment after micellar encapsulation. It is proposed that AV is encapsulated in the palisade layer of the SDS micelles, which allows access to water molecules that facilitate the re-formation of the enol form after photon absorption and relaxation. Although the detailed mechanism of AV tautomerization remains unclear, this work suggests that tuning the chemical microenvironment of AV may be a useful strategy for improving sunscreen efficacy. 
    more » « less
  4. Covalently tethered bichromophores provide an ideal proving ground to develop strategies for controlling excited state behavior in chromophore assemblies. In this work, optical spectroscopy and electronic structure theory are combined to demonstrate that the oxidation state of a sulfur linker between anthracene chromophores gives control over not only the photophysics but also the photochemistry of the molecules. Altering the oxidation state of the sulfur linker does not change the geometry between chromophores, allowing electronic effects between chromophores to be isolated. Previously, we showed that excitonic states in sulfur-bridged terthiophene dimers were modulated by electronic screening of the sulfur lone pairs, but that the sulfur orbitals were not directly involved in these states. In the bridged anthracene dimers that are the subject of the current paper, the atomic orbitals of the unoxidized S linker can actively mix with the anthracene molecular orbitals to form new electronic states with enhanced charge transfer character, different excitonic coupling, and rapid (sub-nanosecond) intersystem crossing that depends on solvent polarity. However, the fully oxidized SO 2 bridge restores purely through-space electronic coupling between anthracene chromophores and inhibits intersystem crossing. Photoexcitation leads to either internal conversion on a sub-20 picosecond timescale, or to the creation of a long-lived emissive state that is the likely precursor of the intramolecular [4 + 4] photodimerization. These results illustrate how chemical modification of a single atom in the covalent bridge can dramatically alter not only the photophysics but also the photochemistry of molecules. 
    more » « less
  5. Abstract

    Solid‐state triplet–triplet annihilation upconversion (TTAUC) blue emission in an electroluminescence device (i.e., an organic light‐emitting diode (OLED)) is demonstrated. A conventional green fluorophore, tris‐(8‐hydroxyquinoline)aluminum (Alq3), is employed as the sensitizer that generates 75% triplet under electrical pumping for the blue triplet–triplet annihilation emitter, 9,10‐bis(2′‐naphthyl) anthracene (ADN), with the heterojunction bilayer structure. The operation lifetime is elongated both for ADN blue (4.1x) and Alq3green (34.8%) emission due to efficient use of excitons and separation of recombination and emission zone. To reduce the singlet quenching (SQ) of blue TTAUC signal by the Alq3sensitizer with lower bandgap, 1‐(2,5‐dimethyl‐4‐(1‐pyrenyl)phenyl)pyrene (DMPPP) is inserted between the Alq3and ADN as a triplet‐diffusion‐and‐singlet‐blocking layer. DMPPP exhibits triplet energy close to Alq3and higher than ADN, as well as higher singlet energy than both Alq3and ADN. It allows triplet diffusion from Alq3to ADN, but blocks the SQ of the blue TTAUC signal by Alq3. 86.1% intrinsic efficiency of TTAUC is demonstrated in this trilayer (Alq3/DMPPP/ADN) OLED.

     
    more » « less